Archivos Mensuales: mayo 2017

Food Waste Recovery Group

Food Waste Recovery Group es una red creada con “el objetivo de ayudar a las industrias alimentarias y otros agentes de la cadena alimentaria a recuperar compuestos valiosos de los residuos de alimentos, valorizar sus flujos y mejorar su sostenibilidad“. En su página web se pueden encontrar referencias sobre documentación (libros, artículos), cursos on-line, seminarios web, etc.

Se fundó en 2013 por la ISEKI Food Association (Special Interest Group 5). Cuenta con miles de asociados e investigadores de más de 60 paises.

El director del grupo es Charis M. Galanakis experto, investigador y promotor de los Laboratorios Galanakis. Es editor y autor de varios libros y multitud de artículos relativos a la recuperación y valorización de subproductos de las industrias alimentarias. Suyas son las aproximaciónes de carácter holístico al tema sustanciadas en los denominados 5-Stages Universal Recovery Process and Universal Recovery Strategy.

 

Ejemplos de valorización de subproductos (2)

De la misma forma que hace cerca de un año, hoy publicamos en el blog 5 entradas realizadas por estudiantes de la asignatura “Valorización de subproductos de las industrias alimentarias”, del Master en Tecnología y Calidad de las Industrias Alimentarias, de la Universidad Pública de Navarra. En ellas se describen algunos ejemplos de procesos y alternativas de valorización de residuos/subproductos de diferente naturaleza. Se trata de esumenes divulgativos realizados a partir de una selección de los cientos de articulos científicos existentes sobre estas temáticas.

Se puede acceder a dichas entradas a  través de los siguientes enlaces:

Obtención de enzimas a partir subproductos de patata

La patata es uno de los vegetales más consumidos del mundo. Segun la FAO, la producción mundial de patata ronda las 341 millones de toneladas anuales, con Asia y Europa a la cabeza, con un 80% de la producción mundial de este tubérculo.

Una parte de la patata se consume en fresco, y otra se procesa para la obtención de diversos productos (chips, purés deshidratados, patatas congeladas, conservas, almidón, etc.).

Se estima que el nivel de desperdicios se situa entre el 5 y el 20%, por lo que el aprovechamiento de estos como subproductos es de gran interés, por su gran cantidad y su bajo coste.

En la publicación que se toma como referencia evalúan el empleo del subproducto de la industria patatera como una fuente de carbono para de enzima glucoamilasa gracias a un proceso de fermentación en estado sólido, empleando como microorganismo de cultivo un moho, el Aspergillus niger.

Para poder obtener cantidades suficientes de glucosa y de la enzima como para poder llevar a cabo este proceso a nivel industrial hay que seguir una serie de pasos:

  • Elección de la mejor depa de A. niger: el “puré” o subproducto obtenido de la industria de la patata se esteriliza y filtra y es inoculado por diferentes cepas de este moho. De ahí se elige la cepa que mejores resultados de generación de glucosa y actividad enzimática ha dado, que en este caso ha sido la cepa A. niger van Thiegem.
  • Estudio del mejor medio para el cultivo: se realizan diferentes medios con ingredientes distintos para poder medir cuáles son los más productivos y de mejor rendimiento económico. Se obtiene que, para A. niger, los ingredientes que más rendimiento aportan son el extracto de malta, el FeSO4.7H2O y el CaCl2.2H2O en diferentes proporciones.
  • Optimización del medio: tras una serie de tratamientos estadísticos mediante el método del compuesto central de análisis de superficie-respuesta se obtienen las cantidades óptimas de cada ingrediente para el mejor funcionamiento del moho en el medio. Los resultados finales son que el medio idóneo estaría compuesto por 50 g/L de puré de patata (base seca), por 51,82 g /L de extracto de malta, 9,27 g/L de CaCl2.

Referencia:

Izmirlioglu G y Demirci A. (2016). Strain selection and medium optimization for glucoamilase production from industrial potato waste by Aspergillus niger. Journal of Sciencie of Food and Agriculture, 96, 2788-2795.

Producción de proteínas hidrolizadas a partir de vísceras de pescado

En los últimos años se ha producido un crecimiento en la producción de pescado por lo que, como es lógico, la generación de residuos orgánicos procedentes de esta industria también ha aumentado. Sin embargo, solo se revalorizan el 30% como productos de bajo valor añadido como, por ejemplo: pienso para animales, agentes fertilizantes y ensilajes.

La producción de proteínas hidrolizadas a partir de estos residuos es tendencia en diversas industrias como la cosmética, farmacéutica o alimentaria, debido a su composición, funcionalidad y elevado valor añadido.

pescado

Pero primero, ¿Qué son las proteínas hidrolizadas ?

Las proteínas hidrolizadas proceden de proteínas que han sido sometidas a una hidrólisis en donde se ha producido una rotura de los enlaces peptídicos y para generar así aminoácidos libres o péptidos de bajo peso molecular.

Estos productos son una fuente nutricional excelente ya que contienen todos los aminoácidos esenciales y no esenciales. Además, presentan una funcionalidad mejorada con respecto a las proteínas nativas en diversos aspectos como:

  • Mejor solubilidad
  • Mejor capacidad de retención de agua
  • Mejor capacidad emulsificante

Esto es debido a que las proteínas nativas presentan una funcionalidad limitada al pH del alimento. Sin embargo, cuando se someten a hidrólisis este rango de pH se amplia.

¿Por qué vísceras de pescado?

Las vísceras de pescado es uno de los residuos orgánicos generados que mayor interés presenta debido a su composición, ya que:

  • Las vísceras son ricas en lípidos y proteínas
  • Contienen gran cantidad de enzimas con interés en la industria como: pepsina, tripsina, quimotripsina, colagenasa y elastasa
  • La fracción lipídica contiene otros compuestos atractivos como el omega-3, fosfolípidos, colesterol y vitaminas liposolubles

omega 3 pescado.jpg

¿Cómo se producen estas proteínas hidrolizadas?

El objetivo principal del proceso es la solubilización de la fuente de proteínas para mejorar su valor biológico y nutricional para obtener productos de alto valor añadido e interés comercial. El proceso consta de tres etapas: un pretratamiento, hidrólisis y recuperación.

En primer lugar, en el pretratamiento se busca mediante diferentes técnicas (tratamientos térmicos, centrifugación o uso de solventes), la concentración de proteínas contenidas en las vísceras del pescado.

Una vez se obtiene el concentrado de proteínas se realiza la hidrólisis de estas. El objetivo de esta etapa es la rotura de los enlaces peptídicos para obtener aminoácidos libres o péptidos de bajo peso molecular mediante reacciones enzimáticas o químicas.

Por último, en la recuperación se purifican las proteínas hidrolizadas obtenidas con el fin de eliminar cualquier resto de otros compuestos. Esto se puede llevar a cabo mediante centrifugación, filtración o cromatografía de intercambio iónico.

Algunas aplicaciones

En la industria alimentaria se ha probado con éxito en cereales, galletas, postres y productos cárnicos como emulsificante.

waffles-2190961_1920

Además, también se está estudiando su uso como ingrediente bioactivo debido a sus propiedades antioxidantes y agente antihipertensivo.

Sin embargo, se necesitan más estudios para conocer el comportamiento de este producto en diferentes matrices alimentarias, su estabilidad en el procesado y su absorción gastrointestinal.

Información obtenida de:

Villamil, O; Váquiro, H; Solanilla, J; (2016). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Quemistry, 224 pp: 160-171